[Total No. of Questions - 9] [Total No. of Fited Pages - 3]

16125(J) - June-16

B. Tech 6th Semester Examination

Control Engineering (NS)

EE-322

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Answer one question from each section A, B, C and D. Answer all question from section-E.

SECTION - A

 Simplify the block diagram shown in the figure below and determine C(s)/R(s).

Draw the signal flow graph of the above system. (20)

2. Obtain a state space representation of the mechanical system shown below. u₁ and u₂ are input and y₄ and y₂ are the output.

SECTION - B

16125

3. The characteristic equation of a control system is $s^4 + ks^3 + 2s^2 + s + 3=0$. Determine the stability of the system using Routh Hurwitz criteria. Find the range of k for stability. (20)

For the system below determine k₁ and k₂ such that the system has damping ratio of 0.7 and undamped natural frequency w_n of 4 rad/sec. (20)

SECTION - C

- 5. A unity feedback control system has the following open loop transfer function $G(s) = \frac{s^2 + 2s + 1}{s^3 + 0.2s^2 + s + 1}$. Draw a Nyquist plot of G(s) and examine the stability of the system. (20)
- 6. Draw the Bode plot of the system whose open loop transfer function is $G(s) = \frac{100(s+2)}{s(s^2+10s+100)}$. Obtain phase margin, gain margin, gain cross over frequency and phase cross over frequency. (20)

SECTION - D

7. A unity feedback system has an open loop transfer function $G(s) = \frac{(k)}{s(s+1)(0.2s+1)}$ Design phase lag compensation for the system to achieve velocity error constant k_v =8 and phase margin of 45°. (20)

8. Explain the action of a field controlled dc servomotor. (20)

SECTION - E

- 9. (a) Compare linear and nonlinear control system.
 - (b) Obtain the transfer function of the circuit below.

- (c) Define absolute stability and relative stability.
- (d) Draw control block diagram of a servo system with velocity feedback and explain the operation.
- (e) Write down the general rules for construction of root loci.
- (f) Define gain margin and phase margin.
- (g) State Nyquist criterion of stability.
- (h) Draw Nyquist plot for a unity feedback system having open loop transfer function.

$$G(s) = \frac{1}{s^2 + 0.5s + 1}$$

- (i) Why compensation is required for a system? What are the advantages of lag compensation?
- (j) What is difference between PI and PD controller? (2×10=20)